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In problems of convective diffusion In a system of reacting particles at high Peclet  numbers, the s t ruc-  
ture of singular s treamlines which begin and end on particle surfaces plays an important role [1-3]. The flow 
involves chains of part icles in which mass t ransfer  is greatly retarded by the Interaction of diffusion wakes 
and boundary layers  of particles belonging to the chains. Taking account of the interaction of diffusion wakes 
and boundary layers  of particles,  and assuming that the ratio of the lattice period b to the radius a of a 
sphere satisfies the inequality b/a >> Pe Ws, where Pe is the Peclet  number of a sIngle sphere, Voskanyan 
et al. [4] performed calculations for a system of spheres of equal radii  at the nodes of a widely spaced cubic 
lattice. Under these assumptions the original problem could be reduced to a se l f -s imilar  problem of the dif- 
fusmn of mat ter  with a constant concentration flowing past an isolated sphere [5]. In the present  paper we 

�9 113 consider mass  t ransfer  of a concentrated ordered system of reacting solid spheres when bin << Pe . 

We consider steady convective diffusion in the laminar flow of a viscous incompressible liquid filtering 
through a system of reacting spheres of equal radii  at the nodes of a cubic lattice. We assume that the liquid 
f i l ters  through the spaces between the spheres with an average velocity U which is parallel  to one axis of the 
lattice, and that the Reynolds number Re = aU/v, where v is the kInematic viscosity of the liquid, is small. 
Then the velocity field of the liquid in the lattice can be determined within the framework of the cell  model 
[6, 7], or when b/a >> 1, by the concentrated-force model [4, 8]. Henceforth we assume that the position of a 
fixed sphere in the lattice is given by a set of three  integers, and the distance along the s tream axis is given 
by the value of the parameter  k = 1, 2, . . . .  

Using a system of spherical coordinates with its origin at the center of an a rb i t ra ry  sphere, the s tream 
function near the surface of a sphere can be writ ten in the form 

= (3/4)UA (n) (r -- a) ~ sin s 0, lira A (n) = l, 
iZ--~ 0 

where n is the number of spheres per unit volume. The specific expression for A (n) can be determined, in 
part icular ,  from [4, 6-8]. 

The concentration distribution in the flow is determIned by solving the steady-state convective diffusion 
equation 
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with boundary conditions exp res s ing  the constancy of  the concentra t ion far  f rom the lat t ice and the complete  
absorpt ion  of the ma t e r i a l  d issolved in the s t r e am  at  the su r faces  of the spheres  (D is the diffusion coef -  
f ic ient) .  

Hencefor th  we assume  that the Pec le t  number  Pe = a U / D  i s  large.  This  implies  that all  the main 
change of concent ra t ion  will  occur  in the thin diffusion boundary layer  of each sphere  in which the tangential  
t r an spo r t  of m a t e r i a l  along the sur face  of the par t i c le  can be neglected in compar i son  with the radia l  t r a n s -  
port ,  and in the region of diffusion wakes in the neighborhood of the singular s t reaml ines  which begin and end 
on par t i c le  sur faces .  T h e r e f o r e ,  to de te rmine  the concentra t ion near  a fixed sphere  i t  is n e c e s s a r y  to solve 
the diffusion boundary  layer  equation with an in- leakage condition which depends on the re la t ive  position of the 
par t ic le  in the lat t ice,  and is given by the concent ra t ion  dis t r ibut ion in the diffusion wake of the ups t ream 
sphere  [1-3]. 

F r o m  now on we a s sume  that the la t t ice  per iod sa t i s f ies  the inequality b / a  ~ Pe ~/s. T h e r e f o r e  the in-  
leakage condition for a sphere  in the k- th  l aye r  is de te rmined  by the concentra t ion dis tr ibut ion in the convec-  
t ive boundary layer  reg ion  of the diffusion wake of the preceding par t ic le  in the (k - 1)-th layer .  

In the convect ive boundary layer  reg ion  the concent ra t ion  is constant  along the s t reaml ines  and is de -  
t e rmined  by the value of the concentra t ion at  the exi t  f rom the diffusion boundary layer .  This  pe rmi t s  the r e -  
duction of the or iginal  problem to the prob lem of mass  t r a n s f e r  of chains of spheres ,  and using the resu l t s  of 
[1-3] and the assumpt ion  that the undepleted solution has  a concentra t ion c, the following express ions  a re  ob-  
tained for  the total  diffusion fluxes through the par t ic le  sur faces :  

I " J "4/srrl/SD~/~c 0--) Ik = 11 [k ~/~ -- ( k  - -  t )  3 /3 ]  ,~ 11 = ~ ~ ~ . 

Taking account  of (1) we obtain for  the ave rage  diffusion flux through the su r face  of a sphere  

k 

( I )  = k-1  ~ I i  : I l k - l l s .  (2) 
i = l  

We assume  now that  the number  of spheres  in the lat t ice is large ,  i .e . ,  k -~o% and de te rmine  the a v e r -  
age concentra t ion dis t r ibut ion along the s t r e a m  axis .  The concent ra t ion  outside the diffusion boundary l ayers  
and wakes will  hencefor th  also be called the concentra t ion in the flow core .  

Since the concent ra t ion  in the flow co re  va r i e s  slowly over  dis tances  of the o rde r  of  a lat t ice period,  a 
r ep re sen t a t i ve  volume can be  introduced which is substant ial ly sma l l e r  than the scale  of var ia t ion  of the con-  
cen t r a t ioa ,  but  contains a la rge  number  of par t ic les .  

We int roduce a coordinate  x m e a s u r e d  along the s t ream.  At the lat t ice nodes it  takes on the values 

x = x(k) ---- k n  -113, (3} 

where  n is the number  of spheres  per  unit volume.  

Taking account  of (3) and the equation for  the concent ra t ion  in the flow co re  

--UOc/Ox = n ( I> ,  x = O, c = co 

we obtain f rom (2) the average  concentra t ion dis t r ibut ion along the s t r e a m  

1 3 - ~ 5 / s  c = c o exp (-- Fx2/S) ,  F = 3nS/gAl/3 (n) ~ '~j a~/~U-~/SD ~/s. (4) 
" "4r(~/3) 

We note that  Eq. (4) is s ignif icantly d i f ferent  f rom the analogous r e su l t  for  a spatial ly uniform d is t r ibu-  
t ion of sphe res  [4] in which the concentra t ion depends exponential ly on the coordinate  along the s t r e am axis.  
The  in terac t ion  of diffusion wakes and boundary l aye r s  of par t i c les  in the lat t ice causes  the average  concen-  
t r a t ion  to d e c r e a s e  m o r e  slowly, but  it  will  always be  l a rg e r  than the analogous concentra t ion for  a random 
dis t r ibut ion of spheres  in a volume. 

By using the r a the r  genera l  r e su l t s  in [9] for Stokes flow around an o rd e r ed  sys tem of identical  pa r t i -  
c les  of a r b i t r a r y  shape when the s ingular  s t r eaml ines  emerg ing  f rom the sur faces  of par t ic les  of each layer  
fall  on pa r t i c l e s  of the next  l ayer ,  and using [2], an expres s ion  (a genera l iza t ion  of (4)) can be obtained for the 
concent ra t ion  in the flow core .  The expres s ion  for the average  concentra t ion dis t r ibut ion in this case  di f fers  
f rom Eq. (4) only in the value of the coeff ic ient  F. 
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F R E E  L A M I N A R  C O N V E C T I O N  OF A L I Q U I D  

IN A R I B B E D  S L O T  

N. V. M u k h i n a  UDC536.25 

Free  convection in the vert ical  gaps of technical apparatus and constructions often occurs in layers 
having walls with complex geometry. Transverse  projections on one or both walls of a liquid or gas layer 
may overlap par t  of the width of the layer.  It is obvious that the presence of such projections may change the 
flow pattern in the gap and may lead to a change in the heat t ransfer  from the hot to the cold wall. 

We used the arrangement  shown in Fig. 1 to investigate f ree  convection in a ver t ical  channel with pro-  
jections. The walls were copper plates 1 (plate thickness 15 mm), placed in a container 2 with the working 
liquid (ethyl alcohol, P r  = 16). In all the experiments we used a channel of height H = 342 mm and depth B = 
56 mm. Its width was changed using a thickaess-eal ibrated attachment made of Plexiglas, trapped between 
the working surfaces of the plates. The temperature  of each of the heat exchangers was maintained constant 
by circulating water from thermostats through the cavity situated behind the working plates. The c(mstancy 
of the plate temperature  along the height was monitored by means of five Nichrom e-Constantan thermocou-  
ples (diameter 0.2 mm), embedded flush with the working surface. 

To measure  the temperature  in the layer we used a Ntchrome-Constantan thermocouple 0.06 mm in 
diameter.  The thermocouple wires in PVC insulation were placed in a thin-walled capillary of stainless steel  
along the r ea r  ver t ica l  end of the layer,  which was shifted by means of an external coordinate reference  sys-  
tem in a ver t ical  direction with a reading accuracy of 0.1 mm. The junction of the thermocouple was intro- 
duced into the middle depth of the layer through the bent end of the capillary. The junction was displaced in 
a fixed horizontal plane by rotating the metal  capillary. The coordinates of the thermocouple were found us-  
ing a KM-6 cathetometer with an accuracy of 0.03 mm. The emfs of the thermocouples were measured with 
a R348 low-resis tance potentiometer (class 0.002). The thermocouples were calibrated against a standard 
platinum resis tance thermometer  with an accuracy of up to O.01~ in the temperature  range 15-60 ~ C. 

For hydrodynamic investigations the method of stroboscopic visualization was used. Aluminum powder 
in the form of spheres with dimensions of 5 ]~ m was used as the marker .  Visual obse rvations and photographs 
of the s t ructure  of the flow were made in reflected light through the t ransparent  wall of the container 6. Par t  
of the layer near the middle was illuminated from the side through a narrow 2-mm vert ical  glass insertion 3 
in one of the plates and a t ransparent  window 4 in the side wall of the container. The illuminating flux was 
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